Code No: R22A0351

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

III B.Tech I Semester Supplementary Examinations, June 2025 Robotics & Automation

(CSE, IT, CSIT, CSE-CS, CSE-AIML, CSE-DS, CSE-IOT & B.Tech-AIML)

	Roll No								
TP: 2.1		l		l	l			l	

Time: 3 hours Max. Marks: 60

Note: This question paper contains two parts A and B

Part A is compulsory which carries 10 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions,

Choosing ONE Question from each SECTION and each Question carries 10 marks.

		PART-A (10 Marks)	BCLL	CO(s)	Marks
		(Write all answers of this part at one place)			
1	A	Name the key components of Embedded System	L1	CO-I	[1M]
		hardware architecture.			
	В	Define a real-time embedded system.	L1	CO-I	[1M]
	С	What is the role of gears in power transmission for robots?	L1	CO-II	[1M]
	D	Name a few types of robotic sensors and their functions.	L1	CO-II	[1M]
	E	Explain the memory organization in AVR microcontrollers.	L2	CO-III	[1M]
	F	How do I/O ports function in an AVR microcontroller?	L1	CO-III	[1M]
	G	What are interrupts, and how are they handled in ARM	L1	CO-IV	[1M]
	J	processors?	Li	CO 17	
	Н	Describe the vector table in ARM architecture.	L2	CO-IV	[1 M]
	I	What challenges do robots face when planning uncertain movements?	L1	CO-V	[1M]
	J	Describe the dynamics of movement in robotic systems.	L2	CO-V	[1M]
	•	PART-B (50 Marks)			[]
		SECTION-I			
2	A	Discuss the advantages and disadvantages of using an	L2	CO-I	[5M]
4	Α	embedded controller versus a microcontroller in a project.	1.2	CO-1	
	В	Explore the future of embedded systems, considering	L2	CO-I	[5M]
	D	potential advancements and their impact on industries	1.2	CO 1	
		such as healthcare, automotive, and consumer			
		electronics.			
		OR			
3	A	What are the primary differences between robots and	L1	CO-I	[2M+3M]
		robotics? How do microprocessors differ from microcontrollers?			,
	В	What is an embedded controller? Give an example of a	L1	CO-I	[2M+3M]
	ט	real-time application of an embedded system.	1/1	CO-1	[2111 3111]

		SECTION-II			
4		Explain the working of servo motor. OR	L4	CO-II	[10M]
5	A	List some common applications of robots in industry. What software is commonly used for robot programming?	L1	CO-II	[5M]
	В	What is the working of stepper motor.	L1	CO-II	[5M]
6	A	SECTION-III Provide an overview of the AVR RISC microcontroller architecture, highlighting its key features and advantages over other architectures.	L2	CO-III	[5M]
	В	Discuss the different families within the AVR microcontroller series, including their specifications and target applications.	L2	CO-III	[5M]
7	A	OR Analyze the pin diagram of an AVR microcontroller, detailing the purpose of each pin and its significance in interfacing with other components.	L4	CO-III	[5M]
	В	Explain the function and organization of the register file in AVR microcontrollers, including the types of registers available.	L2	CO-III	[5M]
8	A	Explore the impact of pipelining on instruction execution latency in ARM processors, including challenges like data hazards and techniques for hazard mitigation.	L2	CO-IV	[5M]
	В	Analyze the importance of ARM processors in modern computing, particularly in mobile and embedded systems, and discuss future trends in ARM technology. OR	L4	CO-IV	[5M]
9	A	How does the ARM architecture differ from other processor architectures? What are general-purpose registers in ARM, and how many are there?	L1	CO-IV	[2,3M]
	В	What is the significance of the CPSR flags in ARM processors? How does pipelining improve the performance of ARM processors?	L1	CO-IV	[2,3M]
10	A	SECTION-V Discuss the concept of robotic perception, including the sensors and algorithms used to enable robots to understand their environment.	L2	CO-V	[5M]
	В	Explain the process of localization for robots, detailing techniques such as GPS, odometry, and SLAM (Simultaneous Localization and Mapping). OR	L2	CO-V	[5M]
11	A	Analyze how robots configure their operating space,	L4	CO-V	[5M]

- including methods for spatial awareness and environmental interaction.
- Elaborate on the significance of mapping in robotics, В including the different types of maps (metric vs. topological) and their uses in navigation.

L2

CO-V

[5M]
